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Abstract. Humanoid robots are starting to replace information kiosks in public 
spaces, providing increased engagement and an intuitive interface. Upgrading 
devices to be humanoid in this fashion may have unexpected consequences re-
lating to the new, more social, embodiment. We investigated how altering a 
voice-command calculator kiosk, by making it humanoid, impacts user trust and 
trust resilience after functional errors. Our results indicate that making a kiosk 
humanoid increases both overall trust and trust resilience, where it reduces the 
impact of functional errors on trust. As public kiosks continue to be replaced by 
humanoids, this highlights the importance of understanding the full impact of 
this embodiment change on interaction. 
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1 Introduction 
Humanoid robots are emerging in public spaces, offering information or assistance to 
the public. For example, the SoftBank Pepper robot (with tablet) can now be found as 
an informational kiosk in airports, banks, and 
taking orders or assigning tables in restaurants. 
This humanoid typically replaces existing self-
help kiosks, with people still interacting using a 
similar touch screen (e.g., mounted on the ro-
bot); however, now the kiosk looks humanoid, 
speaks, makes eye contact, and uses hand ges-
tures. One reason for this shift is that human-
oids can increase user engagement and satisfac-
tion, as a robot that interacts in human-like 
ways can be easier to understand, and natural 
and comfortable to interact with [48]. 

However, social interaction with robots can 
also result in increased trust [3, 19], empathy 
[39], and persuasion [10], even if not explicitly 
designed for. We emphasize that this has the 
potential to be problematic, for example, people 

Fig. 1. Participants interact with a 
tablet or humanoid voice agent calcula-
tor, which makes mistakes. Our results 
find that participants trust the human-
oid more, and lose more trust in the 
tablet after mistakes.   

 3 times 4 is 
311! 

 What is 3 
times 4? 
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may trust high-impact information (e.g., a flight gate, time) more from a robot that a 
regular kiosk, or if the robot is more persuasive than the kiosk when requesting pri-
vate information such as a credit card number, or encouraging spending (e.g., suggest-
ing a tip). It is important to understand the effect of making kiosks humanoid, to ena-
ble us to better inform both designers and consumers of potential impacts. 

In this paper, we investigate how upgrading a non-humanoid agent to be humanoid 
– by changing the physical form and adding generic gestures – may affect a person’s 
trust. We further explore this in the face of functional errors, which one would expect 
to reduce trust (Fig. 1). We compare interaction with a voice-command calculator – 
similar to digital assistants such as Siri – in tablet versus humanoid form, with identi-
cal functional interaction. Rather than isolating features (e.g., comparing with vs. 
without gaze, eyes, gestures, etc., a reductionist approach), we compare between a 
tablet with no humanoid features and a full robot embodiment, to increase generaliza-
bility. It is important to test interaction holistically [47]: we test a viable robotic em-
bodiment (with simple interaction) that a person may actually encounter today. 

Our results show that changing a kiosk to be humanoid can increase trust, and 
when it makes obvious errors, people lose trust in the tablet (non-humanoid) but 
maintain it for the humanoid. This demonstrates potential collateral effects of making 
agents humanoid, where people may trust a humanoid agent version more, even when 
defective. This highlights the importance of considering potential dangers relating to 
introducing humanoid agents into public spaces such as banks, restaurants, or airports. 

2 Related Work 
People tend to treat robots as social entities [47], attributing them with moral and 
social characteristics [4, 18, 41]. Robots can be designed to leverage this, being made 
to look [3, 10, 42] and act [17, 29, 40] in ways to elicit social responses (e.g., using 
body language [1]), which can increase engagement [12, 38], ease of understanding 
[29], empathy [39], and likeability [36]. Robots can use these social techniques to be 
more persuasive and manipulative [11, 38], for example, a robot design can shape 
perceptions and interactions based on whether it is humanoid or mechanical looking 
[3, 11], how it sounds [26], or how it is introduced to people [32]. Robot form is im-
portant, for example, humanoid or zoomorphic robots can be more persuasive [3, 35] 
and induce more empathy [39] than mechanical forms, and physical robots impact 
interaction more strongly than virtual agents [2, 30, 45]. Therefore, it is well estab-
lished that humanoid robots can impact interaction in myriad ways, necessitating the 
need for clear understanding of impacts of simple humanoids replacing kiosks. 

Research has demonstrated that people will indeed trust robots (e.g., [5]), even 
when they have cause to be suspicious of them [5, 37]. Many have studied the impact 
of robot errors, although results are mixed. In some cases, robot errors have little or 
no impact on trust [9], or a robot can actively mitigate a trust break [34]. Others have 
found that the opposite, for example, that people will perceive a robot that makes 
errors as being less reliable and trustworthy [21, 31], and this worsens with repeated 
[7] or particularly glaring mistakes [23]. It is also important to consider whether the 
error is perceived as intentional (e.g., if it is “cheating” [41]). We contribute to the 
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ongoing discussion by focusing on current real-world robot use, comparing trust in a 
humanoid against the non-humanoid it replaces, in the face of functional errors. 

Research has further investigated impact of agent embodiment (e.g., virtual, physi-
cal) on trust, although results are still highly varied and inconclusive. Many investiga-
tions report no impact of agent embodiment, whether it be virtual or physical, or using 
anthropomorphism, on trust at all [9, 16, 22, 27]; at best, only a few inquiries found a 
small effects [13, 24]. Inversely, there is some evidence that anthropomorphism may 
decrease trust [25], contrary to expectations given social robots. The few projects that 
find people trust robots more than virtual agents (e.g., [28]) only measure whether 
people would use information from the agent, and further do not investigate the im-
pact of errors. One inquiry does demonstrate that people may lose trust less in a per-
son that makes errors, compared to a virtual agent [45], motivating the need to simi-
larly compare robots against virtual agents. Our work intersects these existing pro-
jects, studying trust resilience toward a tablet agent versus a humanoid version of the 
same agent, grounded in interaction we are starting to see in public spaces. 

While it is established that robots can garner varying types of trust in a range of 
contexts, research does not yet inform us about how trust may change when replacing 
an interactive kiosk with a humanoid version. That is, the field has not yet established 
a link between humanoid robot embodiment (in comparison to a tablet or disembod-
ied agent) and a person’s trust in the face of errors. 

3 Voice-Command Calculator Platform 
We created a voice-command tablet computer calculator agent for a mock restaurant 
scenario, similar to digital assistants (e.g., Siri), to help customers split a bill or calcu-
late a tip. Our guiding design goal was to keep interaction simple, to represent cur-
rently feasible technology for restaurants. Specifically, we used a rigid command 
dialog instead of more natural (but currently infeasible) conversation. 

3.1 Calculator Interaction 

To start interaction one had to say “Okay, Pepper” (the agent’s name), and the agent 
would beep to indicate that it was ready for a command, after which a person could 
query the agent, that would respond using voice (matching experiences with voice-
command agents). For example, a person could say “Okay, Pepper. [wait for beep]. 
How to split a $50 bill between 2 people with a 
10% tip?” and get a response: “A $50 bill with a 
10% tip split between 2 people would be $27.50 
each”. The response is displayed on the tablet 
screen (Fig. 2). Including the query in the re-
sponse enabled the person to know if they were 
properly understood. After the response, a per-
son could ask another query in the same fashion. 

We used an Amazon Fire HD 10 tablet 
mounted as a kiosk (Fig. 1, top). We generated 
the tablet voice using the SoftBank NAOqi API 

Fig. 2. Visual feedback was displayed 
on the tablet following a query, in this 
case after being asked “how to split a 
$43.20 meal between two people.”  
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played through the tablet’s speakers. The implementation used the Wizard of Oz 
technique, explained further in Section 4. 

3.2 Humanoid Interaction 

For our humanoid addition we replicated our implementation on a Softbank Pepper 
robot, using its built-in tablet (Fig. 1, bottom). Interaction structure, graphical dis-
plays, timing, agent voice, etc., were identical to the tablet; both the standalone and 
robot tablets had the same dimensions and resolution, and were mounted at the same 
height. We enabled the robot’s existing generic speaking movement module, as well 
as face-tracking ability, to add typical but non-descript hand gestures and to keep eye 
contact while talking. Both of these features are not sophisticated and were bundled 
with the robot, representing typical robot interaction in public scenarios. 

4 Experiment: Effects of a Humanoid Embodiment on Trust 
We conducted an experiment to investigate 1) the effects on user trust of adding a 
humanoid form to an agent, and 2) how trust changes (based on embodiment) when 
the agent performs a noticeable error. Embodiment was manipulated between partici-
pants, where each participant interacted with only one of either the tablet or robot. We 
could not conduct within-participants because of the learning effect associated with 
the trust break. We tasked participants with asking the agent a series of restaurant-
relevant math questions, recording their responses. In the first phase, the agent an-
swered all questions correctly, to establish a base-line functionality and level of trust. 
Following, the agent made several egregious mistakes, after which we measured trust 
again. As such, we investigate overall impact of agent embodiment on user trust (be-
tween-participants), and the impact of agent error (before vs. after trust break).  

4.1 Task 

Participants were instructed to “work with the agent to answer two sets of problems.” 
We provided participants with a sheet of restaurant-related questions involving split-
ting bills, tips, tax, and general math questions. We provided the questions to reduce 
variability in how participants queried the robot, to avoid confusion, and to facilitate 
the Wizard-of-Oz implementation. Participants were tasked with using the agent to 
answer the questions by verbally asking and recording the answers on a given paper. 

4.2 Manipulations: Embodiment and Agent Error 

We conducted the experiment with agent form (tablet, humanoid) as the primary be-
tween-participants factor. Further, within-participants we compared before agent error 
(no errors) against after it made errors (with errors). Each participant first interacted 
with the robot without errors to establish a baseline, where they would ask ten pre-
determined math questions, and the agent would answer all questions correctly. Fol-
lowing, again the participant would ask ten (new, but similar) pre-determined math 
questions, but this time the agent would answer three incorrectly with obvious mis-
takes (the 3rd, 7th, 10th, given below). Question selection and mistake timings were 
fixed across participants. The errors were: 
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Question #3: (Q) How should 2 people split a $35.26 bill? 
 (A) Among 2 people, a $35.26 meal costs $43.00 a person. 
#7: (Q) How should 2 people split a $30.00 meal with a 12% tip? 
 (A) Among 2 people, a $30.00 meal with a 12% gratuity costs $4.01 a person. 
#10: (Q) How should a $23.00 meal with a 25% tip be split between 2 people? 
  (A) Among 2 people, a $23.00 meal with a 25% gratuity costs $52.00 a person. 
 

Given the potential impact of any robot error on trust we were very sensitive to tech-
nical errors (e.g., wi-fi or robot error) during the experiment. We excluded any case 
with technical or connectivity issues from our analysis. 

Thus, we have a 2x2 mixed experiment design: embodiment (between: non-
humanoid tablet, humanoid robot), and errors (within: baseline, after trust break). 

4.3 Measurements 

We administered a questionnaire to record participant age and gender. For participant 
trust we used the Multi-Dimensional Measure of Trust scale [44], where participants 
self-rate their trust in the robot’s abilities along two dimensions (four subscales): 

 

capacity trust: 
 reliable subscale (reliable, predictable, someone you can count on, consistent) 
 capable subscale (capable, skilled, competent, meticulous) 
 

moral trust: 
 ethical subscale (ethical, respectable, principled, has integrity) 
 sincere subscale (sincere, genuine, candid, authentic)  

 

Participants rank a series of adjectives on a scale from 0 (not at all) to 7 (very), or 
“Does Not Fit,” treated as missing data, with subscales averaged. 

As a manipulation check, to determine if the participant was likely to notice agent 
errors, we administered a math basics questionnaire (e.g., What is 5 times 7? What is 
17% of 100? What is 55 divided by 5?). We further asked on the post-test question-
naire whether participants noticed the errors (“Were Pepper’s responses accurate?”). 
If we had no indication that a participant noticed the agent errors, then we assumed 
that our within-participants manipulation failed and we excluded the data. 

4.4 Procedure 

We informed participants that their task was to help us test a voice-command calcula-
tor by using it to answer math questions related to paying at a restaurant. We obtained 
informed consent and gave the pre-test demographics and math ability questionnaires. 

The researcher demonstrated how to verbally interact with the agent by asking 
sample math questions, giving the participant an opportunity to try. The researcher 
provided the participant with a single-sheet handout with ten questions to ask the 
agent with spaces for answers. The paper included an example to remind participants 
how to query the agent. The researcher told participants to ask the agent to inform the 
researcher when they were complete (by saying “Okay Pepper, text the researcher”); 
this was also provided on the handout. The researcher then left the room, leaving the 
participant alone with the robot, and the first phase (no-errors) began. 
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Once the participant indicated they were finished, the researcher returned and ad-
ministered the trust questionnaire to measure baseline trust. The participant was given 
a second near-identical hand-out with different math questions. The participant was 
reminded of the task procedure, and how to contact the researcher, and the researcher 
left the room again, beginning the errors phase. Finally, upon completion the re-
searcher returned and again administered the trust questionnaire.  

To finish, the researcher administered the post-test questionnaire (including ma-
nipulation checks) and debriefed the participant on the study purpose and deceptions 
(including the Wizard of Oz implementation and purposeful errors). 

The entire experiment took about 30 minutes, and participants were paid $10 for 
their time. This study was approved by our institutional ethics review board. 

4.5 Procedure: Wizarding 

We designed our wizarding protocol to simulate a realistic digital personal assistant 
similar to existing systems, except focused on the calculator application; in all cases, 
the wizard (and thus agent) would respond consistently, and without variation. The 
wizard did not respond if the participant did not clearly say the “OK Pepper” start 
phrase; if the wizard could not understand the participant, or if an utterance would not 
be expected to work with standard voice-command assistants (e.g., such as “can you, 
uhh.. actually, sorry, Pepper, how about…”), the agent would specifically say “Sorry, 
I couldn’t quite catch that!”. If the participant asked a question outside of the calcula-
tor protocol, the wizard would tell the participant, “Let’s stay on track please.” 

To maintain a consistent and believable agent response speed, we pre-programmed 
the wizarding interface with answers to the 20 math questions, assigned to hot-key 
accelerators. Further, if participants made small mistakes (e.g., reading 20 as 30), the 
interface had shorthand to enable the wizard to quickly type unpredicted responses 
(with the interface displaying and a “thinking” spin graphic) to maintain the illusion 
of a calculator. If the wizard made an unplanned error, this created an inconsistency in 
our error manipulation and so the session was excluded from analysis. 

When making a planned error the agent consistently answered the question incor-
rectly, even if the participant noticed and asked again. If a participant rephrased or 
changed the question, however, the agent reverted to answering correctly. 

4.6 Results 

We recruited 39 participants, but excluded 13 due to a failed manipulation check –did 
not appear to notice the agent error (we address this further in our discussion). Two 
participants were excluded as outliers who answered with all extreme values (max/ 
minimums) on the trust scale, corroborated as the only participants with responses 
more than three inter-quartile ranges from the mean. This resulted in 24 participants, 
aged 18-37 (average 24.1, 9 female, 15 male). Participants were alternately allocated 
to the two embodiments; 11 in the humanoid condition, and 13 in the tablet condition. 

We conducted 2x2 Mixed Model ANOVAs (between: tablet, humanoid; within: 
baseline, errors) on the four trust subscales. We found statistically-significant main 
effects of agent error (with vs. without) on all trust subscales, with trust ratings lower 
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after error (Table 1). We 
also found a main effect of 
agent embodiment (tablet vs. 
humanoid) on all trust sub-
scales, with all mean trust 
ratings lower for the tablet 
than the humanoid (Table 2). 
We graph the 2x2 results in 
Fig. 3 by subscale.  

We found a statistically-
significant interaction effect 
between agent error and 
form on both of the ethical 
(F1,22=4.0, p=.05) and sin-
cere (F1,22=5.7, p=.027) mor-
al trust subscales (see Fig. 3 
for visual interpretation). 
Post-hoc t-tests (Bonferroni 
correction) on ethical trust found no difference between the humanoid and tablet 
without-error (t21=1.4, p=.18), but with error, found a difference on ethical trust be-
tween the humanoid (6.49/7) and tablet (4.69/7, t22=2.6 p=.03). Investigating the ef-
fects of error by agent embodiment, we found no effect of agent error on trust in the 
humanoid case (t10=.5), but found a statistically-significant effect of the error in the 
tablet condition (t12<2.7, p=.036, pre-error 5.71/7, post-error 4.69/7). These results 
support the visual interpretation of the interaction effect (Fig. 3). 

For investigating the interaction effect for sincere trust, we found no difference be-
tween the humanoid and tablet forms without-error (t22=.3), but with-error, we found 
a difference between the humanoid (5.98/7) and tablet (4.75/7, t22=2.5, p=.028). In-
vestigating the effect of error by agent embodiment, we found no effect of agent error 
on sincere trust in the humanoid (t10=.7), but found an effect of the error in the tablet 
condition (t12=4.5, p=.002, pre-error 6.17/7, post-error 4.75/7). These results again 
support the visual interpretation of the interaction effect (Fig. 3). 

5 Discussion 
Overall, our results suggest that people will trust a humanoid agent more than its tab-
let-only variant for both capacity and moral trust. Further, our results support the hy-
pothesis that people will have less trust in an agent when it makes errors; this serves 
as a manipulation check supporting our use of agent error to decrease trust. 

While the interaction effects for moral trust complicates analysis, our post-hoc tests 
corroborate the visual analysis evident in Fig. 3: agent error does not impact moral 
trust in the humanoid, but moral trust falls for the tablet. In other words, the humanoid 
form mitigates the moral trust drop resulting from an obvious functional error. Fur-
ther, while the post-error results may be driving the main effect of embodiment im-
pact, overall people still have more moral trust in the humanoid than the tablet. 

Table 1. Main effects of agent error (baseline, with errors) 
on participant rating of trust subscales. Higher is more trust. 

  
F1,22 p 

baseline  
(/7) 

with-error 
(/7) η2 

capacity 
trust 

reliable 56.1 <.001 6.48 4.31 .72 
capable 48.9 <.001 6.67 4.85 .69 

moral trust ethical 6.3 .02 6.16 5.59 .22 
sincere  11.9 .002 6.21 5.37 .35 

 
Table 2. Main effects of agent form (tablet, humanoid) on 
participant rating of trust subscales. Higher is more trust. 

  
F1,22 p 

humanoid  
(/7) 

tablet  
(/7) η2 

capacity 
trust 

reliable 7.2 .014 5.88 4.91 .25 
capable 4.8 .039 6.02 5.50 .18 

moral trust ethical 4.6 .043 6.54 5.20 .17 
sincere 5.0 .036 6.11 5.46 .18 
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The differences we observed between capacity trust (reliable, capable) and moral 
trust (ethical, sincere), are important to consider: across the board, trust dropped after 
agent error except for moral trust of a humanoid robot. Why exactly capacity trust 
would fall but not moral trust, or why this would happen for a humanoid but not a 
tablet, needs to be further investigated. 

While the concept of moral trust being applied to a humanoid can be analyzed 
within the framework of social robotics (e.g., that people treat robots as social others 
[48]), it is not clear how moral trust would apply to a tablet agent; perhaps, as it used 
human-like speech, participants applied similar principles to understand the agent 
(see, e.g., [33]). If that is the case, then it is further unclear why the humanoid form 
only would not experience a moral trust drop after making errors.  

One possibility relates to the fact that the physical design of the humanoid robot 
(see Fig. 1) has the tablet attached to the front of the robot (and not, e.g., embedded 
within it). Perhaps, then, participants saw the humanoid tablet as being separate from 
the robot itself, as an accessory, and thus do not attribute error blame to the robot per 
se (but to its attached tablet). However, this then contradicts the finding of capacity 
trust falling for the humanoid after the agent error; here again, the reason for capacity 
and moral trust having differing results is not clear.  

Another possibility is that the humanoid may have elicited more pro-social behav-
ior from participants. For example, while they note that the humanoid is less capable 
to make concrete calculations after the error, the social design may encourage partici-
pants to dismiss the error, for example, as an honest mistake, in an affiliative fashion, 
in a way that makes it not the robot’s fault from a moral standpoint. 

Fig. 3. Participant trust rating by subscale and embodiment, before and after errors. All main 
effects of embodiment and error were significant. The interaction effect for ethical and sincere 
trust resulted in a drop in trust for tablet, but not the humanoid. Error bars are 2SE. 
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Along a similar vein, an agent’s form (e.g., gender [8, 20]) can shape assumptions 
about task suitability. If the tablet was seen as a traditional computer, commonly 
known to be good at math, the participant may see a computer that cannot do math as 
not being genuine, authentic, or respectable (moral trust subscales). Alternatively, 
people may apply more human-typical notions to a humanoid; a person making math 
mistakes is common and not related to their moral reasoning ability. In both of these 
cases, results may relate to expectations and the Pratfall effect. 

It is worth considering why the tacked-on humanoid features altered perceptions of 
trust at all: the embodiment change did not change explicit interaction apart from the 
generic hand gestures and gaze, which did not have functional purpose. The human-
oid did not engage in any authentic or complex social interaction. However, while the 
robot’s gestures and actions were functionally simple and not interactive, we should 
note that the robot emitting these social signals may trigger strong reactions in people. 
People can be expected to assume underlying processes behind the signals (e.g., a 
robot that looks at you can think), even if such capability does not exist [6]). Similar-
ly, research has suggested that robot movement can be linked to perceptions of intent 
(even when there is none) and can cause a robot to appear more intelligent [14, 15]. 

Finally, we have concern over the fact that 13 of our 39 participants did not notice 
the robot errors, despite performing well on the math skills quiz, and the errors them-
selves being obvious (e.g., dividing a bill resulting in a larger number). Unfortunately, 
we do not have the qualitative or interview data to appropriately analyze why this 
may have happened. Perhaps given the rote nature of the task people were simply not 
paying attention but rather mechanically following procedure. Perhaps participants 
simply trusted the digital agents blindly as they know computers are good at math. 
Such reactions could easily carry over to a real restaurant situation, further emphasiz-
ing how even people competent in a task may put too much trust in a humanoid robot.  

As a post-hoc measure, we re-conducted our analysis including all participants who 
were excluded due to failed manipulation check. The main effects and general results 
do not change from what is presented here. This further complicates the analysis, as 
even if participants claim they did not notice the errors, they apparently still reacted 
differently. However, we stand by our choice of excluding those participants from the 
main analysis, and the underlying cause of this phenomenon requires additional study. 

Overall, the simple resulting message is that adding a humanoid form to an existing 
agent interaction, for example, to increase engagement or support intuitive interaction, 
will also impact how people trust the agent, and how forgiving they may be of agent 
errors. Such secondary, or perhaps collateral impacts, need to be better understood as 
we continue to see humanoid kiosk robots enter public spaces. Our work is the first to 
clearly establish a strong link between agent embodiment and trust resilience in the 
context of information agents being converted into humanoid robots. 

6 Limitations 
Novelty is a still a large consideration for experiments involving robots, and in this 
case, we expect that the excitement of having an opportunity to speak with a human-
oid shaped our results. For example, despite being asked to not use their phones dur-
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ing the experiment, the wizard researcher observed many participants secretly taking 
photos and videos, and asking humorous questions to the robot for fun. We did not 
see similar behaviors with the tablet. It is possible the excitement of interacting with a 
humanoid was a driver of our results, and not other factors of the embodiment. How-
ever, we want to highlight that novelty is not a confound in robot experiments, but 
simply a reality of robots in society today; we similarly will expect people to experi-
ence novelty when encountering robots in the real world [43]. 

While we measured an abstract, self-report overall perception of trust, future work 
should explore situations where a user has something real at stake (e.g., money, mate-
rial loss). However, we feel that our low-stakes experiment is reasonably representa-
tive of a real-world scenario where the stakes may not be immediately clear to a per-
son (e.g., advice in an airport). Further, our lab-based study has limited ecological 
validity, for example, it did not provide participants with explicit incentive to pay 
attention. If such a study was performed in the wild with real stakes or implications 
(perhaps where people were spending their own money), we may find different re-
sults. Our task itself then, with many restaurant-based questions, is valuable as it im-
plementable with current technology, and could be extended to an in-the-wild study 
without great technological investment. 

One of the core ideas surrounding this work is that an agent’s embodiment implies 
properties about an agent – even how to interact with it [46]. In our non-humanoid 
tablet, people may be expecting to interact with touch, but could not; this may have 
influenced participants to consider the tablet as somehow defective, making it easier 
to lose trust in it. While this may not have a strong effect in our case as people are 
increasingly familiar with voice-only agents like Siri, future task designs should con-
sider interaction methods that feel natural for all embodiments being compared. 

7 Conclusions 
Humanoid robots are becoming increasingly common in public places where they 
interact with people to provide information or kiosk-like services. Commonly, these 
robots replace an existing interactive kiosk or agent, ostensibly as a robot can be more 
engaging, exciting, or easy to work with. However, in this work we highlight that 
simply wrapping a device in a humanoid embodiment may incorporate additional 
social impacts that both the designer and user may not have intended or be aware of. 
Our initial results in this space show how making an interactive voice-controlled 
agent humanoid can increase trust in that agent. Further, people are more forgiving of 
the humanoid, in that even after it makes serious functional errors, they do not report 
a reduction in moral trust of the robot; this is in contrast to a non-humanoid tablet 
agent, where people’s trust reduced across the board following functional errors. This 
can have serious consequences for humanoids used in high impact or sensitive scenar-
ios, such as banks, hospitals, or schools. 

Overall, these results highlight the potential dangers of using humanoid designs 
and indicate the importance of considering the broad consequences – intentional or 
not – of making devices humanoid. Moving forward, we hope this work contributes to 
developing a healthy skepticism and balanced approach to considering the full impli-
cations of humanoid robots entering society. 
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